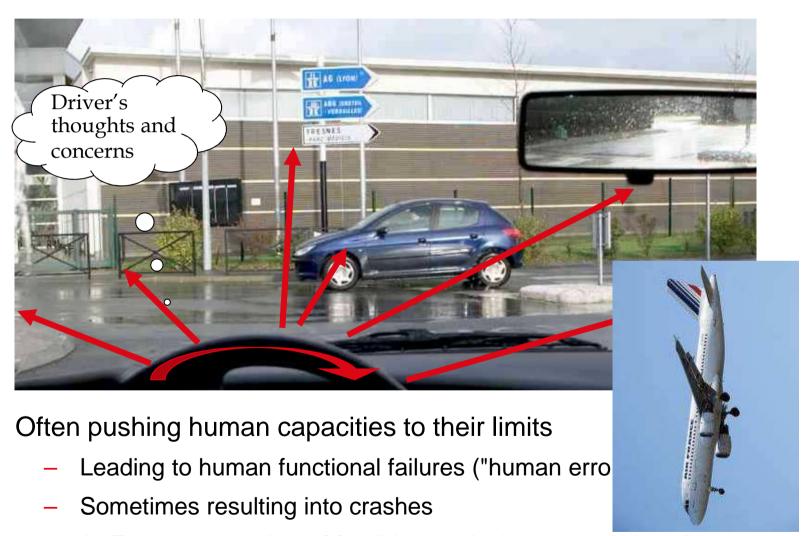


Evaluation based on drivers' needs analysis Pierre Van Elslande (IFSTTAR)

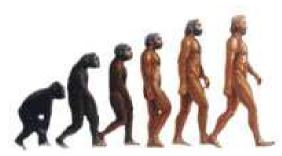
DaCoTA EU Conference On Road Safety data and knowledge-based Policy-making

Athens, 22–23 November 2012



Question

Why do we need e-safety sytems?

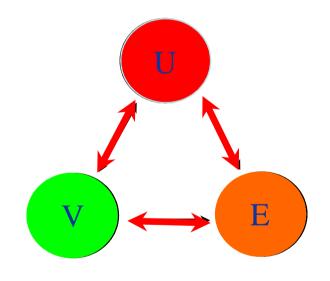

Driving is an over-demanding, complex, variable and risky activity

In Europe, a number of fatalities equivalent to 20 Airbus A320 crashes per month...

Human beings are not so much fitted for driving

A disproportioned speed regarding human physical capacities elaborated through evolution

- Limits to vigilance and attention capacities
- Limits to perceptive ability and motor skills
- An important variety between road users (motivation, attitude, knowledge, ability, etc.)
- •
- But no other system is able to do better than human beings in everyday traffic



Road users in a safe system perspective

A system approach

A question of interactions

An objective of mutual adaptation

An ergonomics perspective

An ergonomics perspective

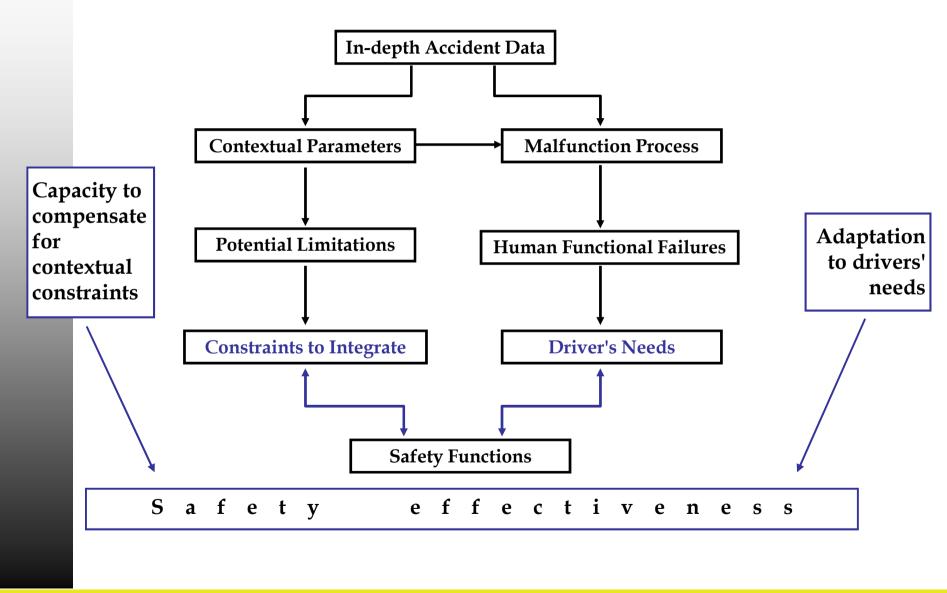
A potentially ideal system is not ideal if not adapted to

its users and its usage



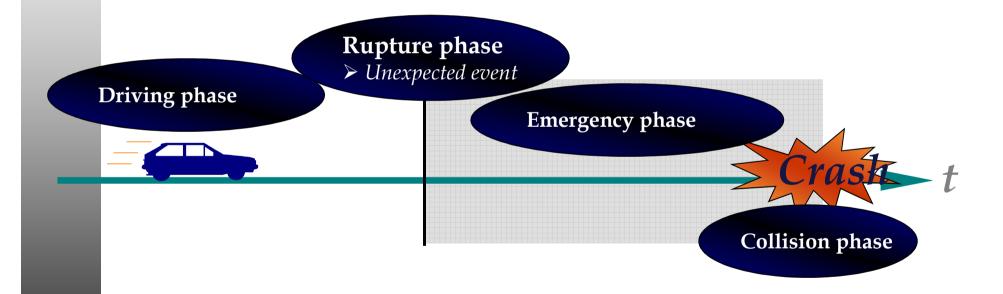
Implication of ergonomics

- An aid must fit with the effective needs of its users
- It must not be useless for them
- It must not provide additional difficulties



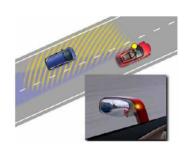
"Human errors" reveal safety needs

- Road accidents are the symptom that Driving is sometimes too much a complex activity for which drivers need an help
- Human functional failures ("errors") reflect drivers' needs
 - What lacked to the driver in order not to be victim of a crash
 - Information, automatism, protection, etc.
- ITS functions are (potentially) a means (among others) to compensate for these drivers' needs
 - If they are adequately defined for the real difficulties met by drivers in crash situations
 - In-depth accident data
 - Human centered model
 - If they are able to fit the constraints found in crash reality
 - (e.g. if the driver is looking behind, a signal on the dashboard is not appropriate...)


Method

Accidents are sequential processes

- ☐ The crash, a terminal event
 - which is built in successive stages
 - which must be analyzed by sequences



- At each stage of the process, different types of needs can be found
- Different safety functions may cover needs at the different phases

Apparatus

- Catalogue of safety functions
 - The most dedicated to safety
 - DaCoTa Deliverable D 5.2.3 : 21 Safety functions
 - E.g. "Blind Spot Detection", "Electronic Stability Control"...
 - + infrastructure based safety functions
 - E.g. "Rumble Strips", "Intersection Alert" ...

- Including two-wheelers and pedestrians
- Case by case analysis
- A time consuming but fruitful activity
 - Human failures and their factors
 - Drivers needs at the different phases
 - Adaptation of safety functions to drivers needs
 - Potential limits of efficiency

Hints of results

- Not to be considered in an overall way
- Differences in the capacity of safety functions to meet drivers needs according to:
 - The accident configuration (single vehicle / interaction with traffic)
 - The moment of the accident process (approach / rupture / emergency)
 - The road users involved (Car drivers / PTW riders / pedestrians)
- For example, for car drivers in interaction accidents
 - Approach phase
 - Intersection Control (30%), Intelligent Speed Adaptation (15%), Traffic Signal Recognition (14%)
 - Rupture phase
 - Collision Avoidance (29%), Intersection control (24 %), Intersection alert (15%)
 - Emergency phase
 - Collision Avoidance (40 %), Predictive Brake assist (19%)

Hints of results

- Potential limitations to safety functions efficiency
 - Linked to the driver
 - Counter motivations, Low vigilance, Distracted driving, etc.
 - Linked to external context
 - Situational constraints, Safety functions specifications, etc.

Most frequent limitations at the rupture accident phase

Potential limitations		Car drivers	PTW riders
Linked to driver's sate and motivation	Inattention, thoughts, concerns	9,0%	3,4%
	Passive distraction (e.g. scenery)	7,5%	1,7%
	Active Distraction	5,0%	1,7%
	Deliberate violation	2,7%	8,6%
Linked to contextual constraints	Reduced time / space condition	8,6%	17,2%
	Insufficient width of radar	6,9%	4,3%
	Visibility impaired by a vehicle	5,5%	5,2%
	Assistance trigger threshold	2,5%	5,2%

Conclusion

A specific contribution to evaluation of safety functions

efficiency

Directed toward road user's needs

- A methodology taking into account:
 - Human difficulties (functional failures)
 - Accident reality (context parameters)
- Allow defining:
 - Safety needs for different kinds of drivers, reflecting their accident-generating failures at the different stage of the process
 - The potential capacity of safety functions to meet these needs
 - The potential lacks in the functions efficiency
 - The conditions for improving their effectiveness
- Purpose is not to guess what the future will be
- But to define the conditions under which it could be better

Thanks you

pierre.van.elslande@ifsttar.fr

IFSTTAR-MA - Accident mechanisms research unit 304, Chemin de la Croix Blanche 13300 Salon-de-Provence FRANCE +33 (0)4 90 56 86 19